SUMMARY OF ORGANIC REACTIONS

SECTION 1 - ALIPHATIC

Aldehydes and ketones

Type of reaction	Mechanism
1. oxidation (aldehydes only): aldehyde \rightarrow carboxylic acid	n/a
reagents: potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ in sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	
conditions: warm under reflux	
equation: $\mathrm{R}-\mathrm{CHO}+[\mathrm{O}] \rightarrow \mathrm{R}-\mathrm{COOH}$	
observation: orange to green	
to distinguish between aldehydes and ketones:	
either:	
add Fehling's solution and heat	
observation: blue solution to brick red precipitate	
equation: $\mathrm{R}-\mathrm{CHO}+4 \mathrm{OH}+2 \mathrm{Cu}{ }^{2+} \rightarrow \mathrm{R}-\mathrm{COOH}+\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$	
or:	
add Tollen's reagent and heat	
observation: colourless solution to silver mirror	
equation: $\mathrm{R}-\mathrm{CHO}+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{RCOOH}+2 \mathrm{Ag}+4 \mathrm{NH}_{3}+2 \mathrm{H}^{+}$	

Carboxylic acids and their salts

Type of reaction	Mechanism
1. acid-base a) carboxylic acids with sodium hydroxide reagent: NaOH conditions: room temperature equation: $\mathrm{R}-\mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{R}^{-\mathrm{COO}^{-} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}$ b) carboxylic acids with sodium carbonate reagent: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ conditions: room temperature equation: $2 \mathrm{R}-\mathrm{COOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{R}-\mathrm{COO}^{-} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ observations: colourless gas evolved which turns limewater milky c) carboxylate salts with acids reagent: $\mathrm{HCl}(\mathrm{aq})$ conditions: room temperature equation: $\mathrm{R}^{-\mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{R}-\mathrm{COOH}(\mathrm{aq})}$	n/a
2. esterification reagents: any alcohol, concentrated sulphuric acid catalyst conditions: heat and reflux equation: $\mathrm{R}_{1}-\mathrm{COOH}+\mathrm{R}_{2} \mathrm{OH}==\mathrm{R}_{1}-\mathrm{COOR}_{2}+\mathrm{H}_{2} \mathrm{O}$	Nucleophilic addition/ Elimination (not required)

Esters

Type of reaction	Mechanism
hydrolysis	n/a
a) acid hydrolysis reagent: concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ conditions: heat under reflux equation: $\mathrm{R}_{1}-\mathrm{COOR}_{2}+\mathrm{H}_{2} \mathrm{O}==\mathrm{R}_{1}-\mathrm{COOH}+\mathrm{R}_{2} \mathrm{OH}$ b) alkaline hydrolysis (saponification) reagent: $\mathrm{NaOH}(\mathrm{aq})$ conditions: heat under reflux equation: $\mathrm{R}_{1}-\mathrm{COOR}_{2}+\mathrm{NaOH}==\mathrm{R}_{1}-\mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{R}_{2} \mathrm{OH}$	

Acyl chlorides and acid anhydrides

Type of reaction	Mechanism
1. acylation using acyl chlorides a) with water (to make carboxylic acids) conditions: room temperature equation: $\mathrm{R}-\mathrm{COCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}-\mathrm{COOH}+\mathrm{HCl}$ observation: white misty fumes b) with ammonia (to make amides) conditions: room temperature equation: $\mathrm{R}-\mathrm{COCl}+\mathrm{NH}_{3} \rightarrow \mathrm{R}-\mathrm{CONH}_{2}+\mathrm{HCl}$ observation: white misty fumes c) with alcohols (to make esters) conditions: room temperature equation: $\mathrm{R}_{1}-\mathrm{COCl}+\mathrm{R}_{2}-\mathrm{OH} \rightarrow \mathrm{R}_{1}-\mathrm{COOR}_{2}+\mathrm{HCl}$ observation: white misty fumes d) with primary amines (to make N -substituted amides) conditions: room temperature equation: $\mathrm{R}_{1}-\mathrm{COCl}+\mathrm{R}_{2}-\mathrm{NH}_{2} \rightarrow \mathrm{R}_{1}-\mathrm{CONHR}_{2}+\mathrm{HCl}$ observation: white misty fumes	Nucleophilic additionelimination (required)
2. acylation using acid anhydrides a) with water (to make carboxylic acids) conditions: room temperature equation: $\mathrm{R}_{1}-\mathrm{COOCO}-\mathrm{R}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}_{1}-\mathrm{COOH}+\mathrm{R}_{2}-\mathrm{COOH}$ b) with ammonia (to make amides) conditions: room temperature equation: $\mathrm{R}_{1}-\mathrm{COOCO}-\mathrm{R}_{2}+\mathrm{NH}_{3} \rightarrow \mathrm{R}_{1}-\mathrm{CONH}_{2}+\mathrm{R}_{2}-\mathrm{COOH}$ c) with alcohols (to make esters) conditions: room temperature equation: $\mathrm{R}_{1}-\mathrm{COOCO}-\mathrm{R}_{2}+\mathrm{R}_{3}-\mathrm{OH} \rightarrow \mathrm{R}_{1}-\mathrm{COO}-\mathrm{R}_{3}+\mathrm{R}_{2}-\mathrm{COOH}$ d) with primary amines (to make N -substituted amides) conditions: room temperature equation: $\mathrm{R}_{1}-\mathrm{COOCO}-\mathrm{R}_{2}+\mathrm{R}_{3}-\mathrm{NH}_{2} \rightarrow \mathrm{R}_{1}-\mathrm{CONH}-\mathrm{R}_{3}+\mathrm{R}_{2}-\mathrm{COOH}$	Nucleophilic additionelimination (not required)

Amines

Type of reaction	Mechanism
1. haloalkane \rightarrow primary amine reagents: haloalkane and excess ammonia conditions: heat equation: R-X $+2 \mathrm{NH}_{3} \rightarrow \mathrm{R}-\mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{X}$ or reagent: haloalkane and ammonia (1:1 ratio) conditions: heat equation: $\mathrm{R}-\mathrm{X}+\mathrm{NH}_{3} \rightarrow \mathrm{R}-\mathrm{NH}_{2}+\mathrm{HX}$ 2. haloalkane \rightarrow secondary amine reagents: haloalkane and ammonia (2:1 ratio) conditions: heat equation: $2 \mathrm{R}-\mathrm{X}+\mathrm{NH}_{3} \rightarrow \mathrm{R}-\mathrm{NH}-\mathrm{R}+\mathrm{HX}$ or reagents: haloalkane and primary amine conditions: heat equation: $\mathrm{R}_{1}-\mathrm{X}+\mathrm{R}_{2}-\mathrm{NH}_{2} \rightarrow \mathrm{R}_{1}-\mathrm{NH}-\mathrm{R}_{2}+\mathrm{HX}$ 3. haloalkane \rightarrow tertiary amine reagents: haloalkane and ammonia (3:1 ratio) conditions: heat equation: $3 \mathrm{R}-\mathrm{X}+\mathrm{NH}_{3} \rightarrow \mathrm{R}_{3} \mathrm{~N}+\mathrm{HX}$ or reagents: haloalkane and secondary amine conditions: heat equation: $\mathrm{R}_{1}-\mathrm{X}+\mathrm{R}_{2}-\mathrm{NH}-\mathrm{R}_{3} \rightarrow \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \mathrm{~N}+\mathrm{HX}$ 4. haloalkane \rightarrow quartenary ammonium salt reagents: haloalkane and ammonia (4:1 ratio) conditions: heat equation: $4 \mathrm{R}-\mathrm{X}+\mathrm{NH}_{3} \rightarrow\left[\mathrm{R}_{4} \mathrm{~N}\right]^{+} \mathrm{X}^{-}$ or reagents: haloalkane and secondary amine conditions: heat equation: $\mathrm{R}_{1}-\mathrm{X}+\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{R}_{4} \mathrm{~N} \rightarrow\left[\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \mathrm{R}_{4} \mathrm{~N}\right]^{+} \mathrm{X}^{-}$	Nucleophilic substitution (required)
2. reduction: nitrile \rightarrow primary amine reagents: LiAlH_{4} in dry ether conditions: room temperature equation: $\mathrm{R}-\mathrm{CN}+4[\mathrm{H}] \rightarrow \mathrm{R}-\mathrm{CH}_{2} \mathrm{NH}_{2}$	n/a
3. acid-base: a) amines with acids equations: $\mathrm{R}_{1}-\mathrm{NH}_{2}+\mathrm{HCl} \rightarrow \mathrm{R}_{1}-\mathrm{NH}_{3} \mathrm{Cl}$ $\begin{aligned} & \mathrm{R}_{1} \mathrm{R}_{2}-\mathrm{NH}+\mathrm{HCl} \rightarrow \mathrm{R}_{1} \mathrm{R}_{2}-\mathrm{NH}_{2} \mathrm{Cl} \\ & \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}-\mathrm{N}+\mathrm{HCl} \rightarrow \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}-\mathrm{NHCl} \end{aligned}$ b) alkyl ammonium salts with alkalis equations: $\begin{aligned} & \mathrm{R}_{1}-\mathrm{NH}_{3} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{R}_{1}-\mathrm{NH}_{2}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{R}_{1} \mathrm{R}_{2}-\mathrm{NH}_{2} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{R}_{1} \mathrm{R}_{2}-\mathrm{NH}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}-\mathrm{NHCl}+\mathrm{NaOH} \rightarrow \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}-\mathrm{N}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	n/a

Amino Acids

Polymers

Type of reaction	Mechanism
1. Addition polymerisation (alkenes \rightarrow polyalkenes) conditions: high temperature, Ziegle-Natte catalyst equation:	Free radical addition (not required)
2. Condensation polymerisation	
a) polyesters dicarboxylic acid + diol \rightarrow polyester conditions: $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat under reflux equation:	Nucleophilic additionelimination (not required)
or diacyl chloride + diol \rightarrow polyester conditions: room temperature equation:	
b) polyamides dicarboxylic acid + diamine \rightarrow polyamide conditions: warm, reflux equation:	
or diacyl chloride + diamine \rightarrow polyamide conditions: room temperature equation:	

SECTION 2 - AROMATIC

Type of reaction	Mechanism
1. nitration (benzene \rightarrow nitrobenzene) Reagent: conc HNO_{3} in conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ Conditions: $50-55^{\circ} \mathrm{C}$ under reflux Equation: $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	Electrophilic substitution (required)
2. alkylation (benzene \rightarrow alkylbenzene) Reagent: $\mathrm{R}-\mathrm{Cl}$ with anyhdrous AlCl_{3} Conditions: $50^{\circ} \mathrm{C}$ under reflux Equation: $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{R}-\mathrm{Cl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{R}+\mathrm{HCl}$ OR Reagent: alkene with anhydrous AlCl_{3} and HCl Equation: $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CR}_{1} \mathrm{R}_{2} \mathrm{CR}_{3} \mathrm{R}_{4}$	Electrophilic substitution (required)
3. acylation (benzene \rightarrow phenylketone) Reagent: $\mathrm{R}-\mathrm{COCl}$ with anydrous AlCl_{3} Conditions: $50^{\circ} \mathrm{C}$ under reflux Equation: $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{R}-\mathrm{COCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COR}+\mathrm{HCl}$	Electrophilic substitution (required)
4. reduction (nitrobenzene \rightarrow phenylamine) Reagents: Sn in conc HCl Conditions: heat under reflux Equation: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	n/a

