SUMMARY OF ORGANIC REACTIONS

SECTION 1 - ALIPHATIC

Aldehydes and ketones

Type of reaction	Mechanism
1. oxidation (aldehydes only): aldehyde → carboxylic acid	n/a
reagents: potassium dichromate ($K_2Cr_2O_7$) in sulphuric acid (H_2SO_4) conditions: warm under reflux equation: R-CHO + [O] \rightarrow R-COOH observation: orange to green	
to distinguish between aldehydes and ketones: either:	
add Fehling's solution and heat observation: blue solution to brick red precipitate equation: R-CHO + 4OH⁻ + 2Cu²+ → R-COOH + Cu₂O + 2H₂O	
or: add Tollen's reagent and heat observation: colourless solution to silver mirror	
equation: R-CHO + $2[Ag(NH_3)_2]^+ + H_2O \rightarrow RCOOH + 2Ag + 4NH_3 + 2H^+$	
2. reduction : carbonyl → alcohol	Nucleophilic addition
reagents: NaBH ₄ (aq)	(required)
conditions: room temperature equation: R_1 -CO- R_2 + 2[H] \rightarrow R_1 -CH(OH)- R_2	
3. addition of HCN : carbonyl → hydroxynitrile	Nucleophilic
reagents: NaCN and HCl(aq)	addition (required)
conditions: room temperature	(required)
equation: R_1 -CO- R_2 + HCN \rightarrow R_1 -C(CN)(OH)- R_2	

Carboxylic acids and their salts

Type of reaction	Mechanism
1. acid-base	n/a
a) carboxylic acids with sodium hydroxide reagent: NaOH conditions: room temperature equation: R-COOH(aq) + NaOH(aq) → R-COO⁻Na⁺(aq) + H ₂ O(l)	
b) carboxylic acids with sodium carbonate reagent: Na ₂ CO ₃ conditions: room temperature equation: 2R-COOH(aq) + Na ₂ CO ₃ (aq) → 2R-COO-Na ⁺ (aq) + CO ₂ (g) + H ₂ O(l) observations: colourless gas evolved which turns limewater milky	
c) carboxylate salts with acids reagent: HCl(aq) conditions: room temperature equation: R-COO⁻(aq) + H⁺(aq) → R-COOH(aq)	
2. esterification reagents: any alcohol, concentrated sulphuric acid catalyst conditions: heat and reflux equation: R_1 -COOH + R_2 OH == R_1 -COOR $_2$ + H_2 O	Nucleophilic addition/ Elimination (not required)

Esters

Type of reaction	Mechanism
hydrolysis	n/a
a) acid hydrolysis reagent: concentrated H_2SO_4 conditions: heat under reflux equation: $R_1\text{-COOR}_2 + H_2O == R_1\text{-COOH} + R_2OH$	
b) alkaline hydrolysis (saponification) reagent: NaOH(aq) conditions: heat under reflux equation: R_1 -COOR $_2$ + NaOH == R_1 -COO $^-$ Na $^+$ + R_2 OH	

Acyl chlorides and acid anhydrides

Type of reaction	Mechanism
1. acylation using acyl chlorides a) with water (to make carboxylic acids) conditions: room temperature equation: R-COCl + H ₂ O → R-COOH + HCl observation: white misty fumes	Nucleophilic addition- elimination (required)
b) with ammonia (to make amides) conditions: room temperature equation: R-COCl + NH ₃ → R-CONH ₂ + HCl observation: white misty fumes c) with alcohols (to make esters)	
conditions: room temperature equation: R_1 -COCl + R_2 -OH \rightarrow R_1 -COOR ₂ + HCl observation: white misty fumes d) with primary amines (to make N-substituted amides) conditions: room temperature	
equation: R_1 -COCl + R_2 -NH ₂ \rightarrow R_1 -CONHR ₂ + HCl observation: white misty fumes	
 2. acylation using acid anhydrides a) with water (to make carboxylic acids) conditions: room temperature equation: R₁-COOCO-R₂ + H₂O → R₁-COOH + R₂-COOH 	Nucleophilic addition- elimination (not required)
b) with ammonia (to make amides) conditions: room temperature equation: R₁-COOCO-R₂ + NH₃ → R₁-CONH₂ + R₂-COOH	
c) with alcohols (to make esters) conditions: room temperature equation: R₁-COOCO-R₂ + R₃-OH → R₁-COO-R₃ + R₂-COOH d) with primary amines (to make N-substituted amides)	
conditions: room temperature equation: R_1 -COOCO- $R_2 + R_3$ -NH ₂ $\rightarrow R_1$ -CONH- $R_3 + R_2$ -COOH	

Amines

Type of reaction	Mechanism
1. haloalkane → primary amine	Nucleophilic
reagents: haloalkane and excess ammonia conditions: heat	substitution (required)
equation: $R-X + 2NH_3 \rightarrow R-NH_2 + NH_4X$ or	
reagent: haloalkane and ammonia (1:1 ratio) conditions: heat	
equation: $R-X + NH_3 \rightarrow R-NH_2 + HX$	
2. haloalkane → secondary amine	
reagents: haloalkane and ammonia (2:1 ratio) conditions: heat	
equation: $2R-X + NH_3 \rightarrow R-NH-R + HX$	
or reagents: haloalkane and primary amine	
conditions: heat equation: R_1 - X + R_2 - NH_2 \rightarrow R_1 - NH - R_2 + HX	
3. haloalkane → tertiary amine	
reagents: haloalkane and ammonia (3:1 ratio)	
conditions: heat equation: $3R-X + NH_3 \rightarrow R_3N + HX$	
or reagents: haloalkane and secondary amine	
conditions: heat equation: R_1 -X + R_2 -NH- $R_3 \rightarrow R_1R_2R_3N$ + HX	
4. haloalkane → quartenary ammonium salt	
reagents: haloalkane and ammonia (4:1 ratio)	
conditions: heat equation:	
$4R-X + NH_3 \rightarrow [R_4N]^+X^-$ or	
reagents: haloalkane and secondary amine	
conditions: heat equation: R_1 - X + $R_2R_3R_4N \rightarrow [R_1R_2R_3R_4N]^+X^-$	
2. reduction : nitrile → primary amine	n/a
reagents: LiAlH ₄ in dry ether	
conditions: room temperature equation: $R-CN + 4[H] \rightarrow R-CH_2NH_2$	
3. acid-base:	n/a
a) amines with acids	
equations: R_1 -NH ₂ + HCl \rightarrow R_1 -NH ₃ Cl R_1R_2 -NH + HCl \rightarrow R_1R_2 -NH ₂ Cl	
$R_1R_2R_3$ -N + HCl $\rightarrow R_1R_2R_3$ -NHCl	
b) alkyl ammonium salts with alkalis equations: R_1 -NH ₃ Cl + NaOH \rightarrow R_1 -NH ₂ + NaCl + H ₂ O	
R_1R_2 -NH ₂ Cl + NaOH \rightarrow R_1R_2 -NH + NaCl + H ₂ O	
$R_1R_2R_3$ -NHCl + NaOH $\rightarrow R_1R_2R_3$ -N + NaCl + H ₂ O	

Amino Acids

Type of reaction	Mechanism
1. acid-base reactions of amino acids	
a) with acids reagents: HCl conditions: room temperature equation: R-CH(NH ₂)-COOH + HCl → R-CH(NH ₃ +Cl ⁻)-COOH	
b) with alkalis reagents: NaOH conditions: room temperature equation: R-CH(NH ₂)-COOH + NaOH →R-CH(NH ₂)-COO ⁻ Na ⁺ + H ₂ O	
2. condensation reactions of amino acids	
conditions: DNA equation: n R-CH(NH ₂)-COOH \rightarrow H-(NHCRHCO) _n -OH + (n-1) H ₂ O	Nucleophilic addition-elimination
3. hydrolysis of proteins	(not required)
reagents: 6 moldm ⁻³ HCl conditions: heat, reflux equation: H-(NHCRHCO) _n -OH + (n-1) H ₂ O + n HCl → n R-CH(NH ₃ ⁺ Cl ⁻)-COOH	

Polymers

Type of reaction	Mechanism
1. Addition polymerisation (alkenes → polyalkenes)	Free radical
conditions: high temperature, Ziegle-Natte catalyst equation:	addition (not
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	required)
2. Condensation polymerisation	
a) polyesters dicarboxylic acid + diol → polyester conditions: H ₂ SO ₄ , heat under reflux equation:	Nucleophilic addition-elimination
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(not required)
or diacyl chloride + diol → polyester conditions: room temperature equation:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
b) polyamides dicarboxylic acid + diamine → polyamide conditions: warm, reflux equation:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
or diacyl chloride + diamine → polyamide conditions: room temperature equation:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

3. Hydrolysis of condensation polymers

a) polyesters

reagents: NaOH(aq) conditions: heat equation:

$$HO = \begin{bmatrix} 0 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

b) polyamides

reagents: HCl(aq) conditions: heat equation:

+ (2n-1)
$$H_2O + 2n HCI$$
 \longrightarrow $R_1 \longrightarrow R_2 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow$

SECTION 2 – AROMATIC

Type of reaction	Mechanism
1. nitration (benzene → nitrobenzene)	Electrophilic substitution
Reagent: conc HNO ₃ in conc H ₂ SO ₄ Conditions: 50-55°C under reflux	(required)
Equation: $C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$	
2. alkylation (benzene → alkylbenzene)	Electrophilic substitution
Reagent: R-Cl with anyhdrous AlCl ₃ Conditions: 50°C under reflux	(required)
Equation: $C_6H_6 + R-Cl \rightarrow C_6H_5-R + HCl$	
OR	
Reagent: alkene with anhydrous AlCl ₃ and HCl	
Equation: $C_6H_6 + R_1R_2C = CR_1R_2 \rightarrow C_6H_5CR_1R_2CR_3R_4$	
3. acylation (benzene → phenylketone)	Electrophilic substitution
Reagent: R-COCl with anydrous AlCl ₃ Conditions: 50°C under reflux	(required)
Equation: $C_6H_6 + R\text{-COCl} \rightarrow C_6H_5COR + HCl$	
4. reduction (nitrobenzene → phenylamine)	n/a
Reagents: Sn in conc HCl	
Conditions: heat under reflux	
Equation: $C_6H_5NO_2 + 6[H] \rightarrow C_6H_5NH_2 + 2H_2O$	